

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 15 (2004) 3281-3287

Tetrahedron: Asymmetry

Enzyme-catalyzed kinetic resolution of piperidine hydroxy esters

Magdolna Solymár, Enikő Forró and Ferenc Fülöp*

Institute of Pharmaceutical Chemistry, University of Szeged, H-6701 Szeged, PO Box 121, Hungary

Received 27 July 2004; accepted 10 August 2004 Available online 2 October 2004

Abstract—The highly enantioselective (E > 200) kinetic resolution of (\pm)-ethyl *cis*-(\pm)-4 and *trans*-1-(*tert*-butoxycarbonyl)-4-hydroxypiperidine-3-carboxylate (\pm)-5 was achieved by *Pseudomonas fluorescens* lipase-catalyzed asymmetric acylation with vinyl acetate in diisopropyl ether at room temperature. *Candida antarctica* lipase A-catalyzed asymmetric acylation of (\pm)-ethyl *cis*-1-benzyl-3hydroxypiperidine-4-carboxylate (\pm)-11 was performed with vinyl propanoate in diisopropyl ether at 3 °C, with good enantioselectivity (E = 75).

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Among the alkaloids and their analogues, esters and hydroxy esters containing a piperidine ring can modify neurotransmission, resulting in wide-ranging effects on the central nervous system. Piperidine-based compounds, such as nipecotic acid and its hydroxy- or amino-substituted derivatives, have therefore been synthetized¹ and investigated for their GABA-agonist activity,² their binding capability to the cocaine receptor on the dopamine transporter³ and their potential cholinergic⁴ and anticonvulsant⁵ activities. The binding sites involved in these effects exhibit stereoselectivity, as (R)-(-)-nipecotic acid has proved to be a more effective GABA-uptake inhibitor^{2d} and the affinity of (R)-cocaine is higher for the cocaine receptor.⁶ Hydroxylated and polyhydroxylated piperidines have been found to be effective glucosidase inhibitors⁷ and have been used in the synthesis of oligosaccharide mimetics.⁸ The trans-4-hydroxy ester 5 is of importance as a potential intermediate in the synthesis of the first reported selective ORL1-receptor antagonist.9 Orthogonally protected trans-4-aminopiperidine-3-carboxylic acid has been utilized as a conformationally restricted β -amino acid building block in foldamer research.¹⁰ These facts highlight the significance of the syntheses of chiral piperidines as synthetic building blocks and members of the chiral pool.

The enantioselective synthesis of variably substituted piperidine compounds has been widely investigated.¹¹ Baker's yeast has been utilized with moderate to good diastereoselectivities for the reduction of ethyl 1-(tertbutoxycarbonyl)-4-oxopiperidine-3-carboxylate 3 under fermenting and nonfermenting conditions, when the (3R,4S)-enantiomer was obtained.^{8a,12,13} This absolute configuration is identical with that of the corresponding stereogenic carbons of natural (–)-cocaine. The absolute configuration of the resulting hydroxy ester has been proved,^{12a} but the specific rotation data on the products with different enantiomeric excesses remain unclear. Enzymatic kinetic resolution has been successfully used in the cases of the N-methyl and N-isopropyl analogues of 4 and 5,¹⁴ as earlier for the resolution of racemic cocaine,¹⁵ through the pig liver esterase-catalyzed (R)-selective hydrolysis of the phenylacetyl group. Baker's yeast also catalyzes the reduction of ethyl 1-benzyl-3-oxopiperidine-4-carboxylate (the base of 6) in an (*R*)-selective manner.¹⁶

In order to prepare the enantiomers of piperidine-based 4-hydroxy and 3-hydroxy esters, we set out to investigate the *O*-acylation reactions of *N*-Boc-protected 4-hydroxy esters **4** and **5**, and their 3-hydroxy ester regioisomers **9** and **10**, in organic media by lipase catalysis.

2. Results and discussion

2.1. Synthesis of model racemic hydroxy esters

N-Benzyl-substituted oxo esters 1 and 6 were synthesized by Dieckmann condensation¹⁷ from ethyl

^{*}Corresponding author. Tel.: +36 62 545564; fax: +36 62 545705; e-mail: fulop@pharma.szote.u-szeged.hu

3-(N-benzyl-N-carbethoxyethyl)aminopropanoate¹⁸ and ethyl 4-(N-benzyl-N-carbethoxymethyl)aminobutanoate,¹⁷ respectively, which were debenzylated to give hydrochlorides 2 and 7. Boc-protected oxo esters 3 and 8 were subjected to reduction with NaBH₄ to give hydroxy esters 4, 5 and 9, 10, which were isolated by column chromatography. Compounds 9 and 10 were formed in a ratio of 7:3 in the reduction step; 9 could be isolated with de = 96%, and 10 with de = 90%, but in a very low (2%) yield. The diastereomeric mixture of N-benzyl-substituted hydroxy esters 11 and 12 was prepared directly from the liberated base of 6 under the same reduction conditions. Pure 11 was isolated by column chromatography, whereas pure 12 could not be isolated; it was obtained only in a 1:1 diastereomeric mixture (Scheme 1).

2.2. Lipase-catalyzed acylation of (\pm) -4 and (\pm) -5

After a lipase screening for the acylation of (\pm) -4 at room temperature, the effects of solvent, acyl donor, temperature and enzyme concentration were studied (Table 1).

With vinyl acetate (VA) as acyl donor in diisopropyl ether (*i*-Pr₂O) at room temperature, *Candida antarctica* lipase A (CAL-A) catalyzed the acylation with moderate enantioselectivity (entry 1). Lipolase (immobilized C. antarctica lipase B preparation), lipase PS (from P. cepacia), CAL-B (C. antarctica lipase B, Novozym 435) and lipase AK (from *P. fluorescens*) demonstrated excellent enantioselectivities, but lower catalytic activity, under the same conditions (entries 2–5). The best combination of enantioselectivity and reaction rate was observed for immobilized lipase AK catalysis. In an effort to increase the reaction rate, different solvents were tested: low reaction rates and low enantioselectivities were observed in CH_2Cl_2 , THF and acetone (entries 6, 7 and 9), whereas the reaction rate was considerably higher in i-Pr₂O and in hexane (entries 5 and 8), with excellent enantioselectivities, *i*-Pr₂O giving the best results. On change of the acyl donor to isopropenyl acetate or vinyl propanoate (VP), the reaction became slower (after 144h, c = 48%, or after 116h, c = 50%), but the enantioselectivity was not affected (E > 200). Increase of the temperature was accompanied by a slight decrease in enantioselectivity (entries 10–12). As the lipase concentration was increased from 20 mg/mL (entry 10) to 30 mg/mL (after 10h, c = 37%, E > 200), the reaction rate increased considerably, but a further increase to 40 mg/mL (after 10h, c = 41%, E = 86) resulted in a drop in enantioselectivity.

In the small-scale acylation of (\pm) -5 under the conditions optimized for (\pm) -4 (Table 1, entry 10), a higher reaction rate (about five times) was observed, with excellent enantioselectivity (after 2h, c = 41%, E > 200). This observation is in accordance with the literature data concerning the *O*-acylation of the *cis*- and *trans*-cyclohexane-based analogues by lipase PS¹⁹ and the hydrolysis of the *O*-acetates by *P. fluorescens* lipase.²⁰

2.3. Lipase-catalyzed acylation of (±)-11

Since the O-acylated derivatives of the 3-hydroxy regioisomer 9 could not be separated by chiral gas chromatography on either a β -cyclodextrin, an L-valine or a γ-cyclodextrin column (Chrompack CP-Chirasil-DEX-CB, Chirasil-L-Val and GAMMA DEX 120), we decided to continue with the N-benzyl analogue 11, the enantiomers of which could be easily analyzed through baseline separation of the acylated derivatives. In an enzyme screening, with 0.2 M VA as acyl donor in *i*-Pr₂O at 0.1 M substrate concentration, with 70 mg/ mL enzyme at 45°C, lipase AK, lipase PS and Chirazyme L-2 were found not to catalyze the O-acylation of (\pm) -11; only CAL-A displayed considerable catalytic activity, but low enantioselectivity (Table 2, entry 1). To increase the enantioselectivity, the effects of solvent, acyl donor, temperature and enzyme concentration were tested (Table 2). The enantioselectivity increased with decreasing temperature, but the reaction rate decreased (entries 1-3). As the reaction rate did not decrease at

Scheme 1. Reagents and conditions: (i) Pd/C, EtOH, H₂ atm; (ii) Boc₂O, Et₃N, CH₂Cl₂; (iii) NaBH₄, abs EtOH; (iv) Et₃N, CH₂Cl₂.

Table 1. Enzymatic O-acylation (20 mg/mL enzyme) of (±)-4 and (±)-5 (0.1 M) with vinyl acetate (VA) (0.2 M)

		он		ŌН	OCOM	le		
			DOEt	<u>کر بار</u>	DOEt	COOEt		
		ſĬ	VA	ſĬ	ſĬ			
		∕_N∕	lipase	→ \ _N /	+ <u>N</u>			
		COO ^t B	1	COO ^t Bu	coot	Bu		
		(+) 1 cis		40	4b			
		(±)- 5 tran	15	-ta 5a	40 5b			
Entry	Enzyme	T (°C)	Solvent	Time (h)	Conv. ^a (%)	Ee _s (%)	Ee _p (%)	E^{b}
1	CAL-A ^c	rt	<i>i</i> -Pr ₂ O	3.6	51	89	85	37
2	Lipase PS ^c	rt	<i>i</i> -Pr ₂ O	72	33	97	48	122
3	CAL-B	rt	<i>i</i> -Pr ₂ O	72	39	61	97	131
4	Lipolase	rt	<i>i</i> -Pr ₂ O	70	43	72	98	>200
5	Lipase AK ^c	rt	<i>i</i> -Pr ₂ O	72	49	95	98	>200
6	Lipase AK ^c	rt	CH_2Cl_2	180	2	2	93	27
7	Lipase AK ^c	rt	THF	180	13	11	76	8
8	Lipase AK ^c	rt	Hexane	180	50	99	98	>200
9	Lipase AK ^c	rt	Acetone	180	8	2	19	1
10	Lipase AK ^c	45	<i>i</i> -Pr ₂ O	11	27	37	>99	>200
11	Lipase AK ^c	55	<i>i</i> -Pr ₂ O	43	49	96	99	>200
12	Lipase AK ^c	60	<i>i</i> -Pr ₂ O	28	41 ^d	67	96	100

^a Conv. = $ee_s/(ee_s + ee_p)$.

 $^{b}E = \ln[(1 - ee_{s})/(1 - ee_{s}/ee_{p})]/\ln[(1 - ee_{s})/(1 + ee_{s}/ee_{p})]^{21}$

^c Contains 20% (w/w) of lipase adsorbed on Celite in the presence of sucrose.²²

^d The reaction stopped at this conversion.

Table 2. CAL-A-catalyzed O-acylation of (\pm) -11 (0.1 M) with different acyl donors (0.2 M) in organic solvents

COOEt OH N CH ₂ Ph	acyl donor lipase	COOEt	÷	COOEt OCOR N CH ₂ Ph
(±)- 11 cis		2 11a		11b

R = Me, Et, n-Pr

Entry	CAL-A (mg/mL)	T (°C)	Solvent	Acyl donor	Time (h)	Conv. ^a (%)	Ee _s (%)	Ee _p (%)	E^{b}
1	70	rt	<i>i</i> -Pr ₂ O	VA	5	50	60	60	7
2	70	rt	<i>i</i> -Pr ₂ O	VA	10	38	50	83	18
3	70	3	<i>i</i> -Pr ₂ O	VA	145	40	57	86	23
4	40	rt	<i>i</i> -Pr ₂ O	VA	9	43	60	79	15
5	40	rt	Toluene	VA	166	40	47	69	9
6	40	rt	MeCN ^c	VA	166	29	21	52	4
7	40	rt	<i>i</i> -Pr ₂ O	VP	4	48	71	77	16
8	40	3	<i>i</i> -Pr ₂ O	VP	4	27	36	96	75
9	40	rt	<i>i</i> -Pr ₂ O	VB	3	48	63	69	10
10	40	rt	<i>i</i> -Pr ₂ O	Isopropenyl acetate	50	36	45	79	13
11	40	45	PrCO ₂ Et	PrCO ₂ Et	128	21	10	38	2

^a Conv. = $ee_s/(ee_s + ee_p)$.

 $^{b}E = \ln[(1 - ee_{s})/(1 - ee_{s}/ee_{p})]/\ln[(1 - ee_{s})/(1 + ee_{s}/ee_{p})]^{21}$

^c Opposite enantioselectivity.

40 mg/mL enzyme concentration (entry 4 vs entry 2), from economic considerations 40 mg/mL enzyme was used in the further reactions. On change of the solvent to toluene or MeCN, the enantioselectivity and the reaction rate decreased (entries 5 and 6 vs entry 4). The enzyme exhibited the opposite enantiopreference in MeCN, but low enantioselectivity and a low reaction rate (entry 6). With increase of the acid side-chain length in the acyl donor from VA to VP, the reaction rate increased without a loss in enantioselectivity at room temperature (entries 4 and 7), but when vinyl butanoate (VB) was used, the enantioselectivity did decrease (entry 9). The application of isopropenyl acetate, possessing a bulkier side-chain in the alcohol part of the ester, decreased both the enantioselectivity and the reaction rate (entry 10 vs entry 4).

Substrate	Time (h)	Conv. ^c (%)	4a–11a				4b-11b			
			Abs. config.	Ee (%)	$\left[\alpha\right]_{\mathrm{D}}^{25}$	Yield ^d (%)	Abs. config.	Ee (%)	$\left[\alpha\right]_{\mathrm{D}}^{25}$	Yield ^d (%)
(±)- 4 ^a	41.5	50	3 <i>R</i> ,4 <i>S</i>	>99	+57.9 ^e	30	3 <i>S</i> ,4 <i>R</i>	99	-41.0^{e}	47
(±)- 5 ^a	14	50	3 <i>S</i> ,4 <i>S</i>	99	-24.4^{f}	41	3 <i>R</i> ,4 <i>R</i>	>99	+6.5 ^g	39
(\pm) -11 ^b R=CH ₂ CH ₃	Resolution in two		3 <i>S</i> ,4 <i>S</i>	92	+37.7 ^h	28	3 <i>R</i> ,4 <i>R</i>	91	-24.0^{i}	33
	steps									

Table 3. Gram-scale resolution of (\pm) -4, (\pm) -5 and (\pm) -11

^a 0.1 M substrate, 0.2 M VA in *i*-Pr₂O, 30 mg/mL lipase AK at 45 °C.

^b0.1 M substrate, 0.2 M VP in *i*-Pr₂O, 40 mg/mL CAL-A at 3 °C.

^d Total yield starting from racemic substrate.

^f c 0.91, CH₂Cl₂.

^g c 1.01, CH₂Cl₂.

^h c 0.77, CHCl₃.

 ^{i}c 1, CHCl₃.

For the isolation of enantiomeric compounds, resolution could be achieved in two consecutive steps, under the same conditions (entry 8).

As a result of the above small-scale experiments, the preparative-scale resolution of (\pm) -4 and (\pm) -5 was performed through *O*-acetylation by lipase AK with VA in *i*-Pr₂O at 45 °C (Table 1, conditions of entry 10), while (\pm) -11 was resolved through *O*-acylation by CAL-A with VP in *i*-Pr₂O at 3 °C (Table 2, entry 8), and the enantiomers were isolated (Table 3).

2.4. Determination of absolute configuration

When the specific rotation data on **4a** are compared with literature values,^{8a,12,13} we can conclude from the sign of rotation that lipase AK exhibited (*R*) selectivity in the *O*-acylation. Our results reveal $[\alpha]_D^{25} = +57.9$ (*c* 1, CH₂Cl₂) for the hydroxy ester **4a** (e > 99%), which is in accordance with the literature values of $[\alpha]_D^{25} = +15$ (*c* 0.75, CH₂Cl₂, ee = 24%)^{8a} and $[\alpha]_D^{25} = +23$ (*c* 0.75, CH₂Cl₂, ee = 41%) for the (3*R*,4*S*) enantiomer.¹³ For determination of the absolute configuration, **11b** was transformed to its methyl ester and *N*-Boc-protected analogue, which is known in the literature. Comparison of the specific rotation $[\alpha]_D^{25} = -27$ (*c* 0.12, CHCl₃) with that given in the literature, $[\alpha]_D^{25} = -32.7$ (*c* 1, CHCl₃, ee not given)^{12b} proved the absolute configuration (3*R*,4*R*) for the product.

3. Conclusions

The resolution of highly valuable *N*-protected piperidinebased hydroxy esters has been achieved by (*R*)-selective lipase catalysis. Enantiomerically pure (ee $\ge 99\%$) (3*R*,4*S*)-ethyl *cis*-**4a** and (3*S*,4*S*)-ethyl *trans*-1-(*tert*-butoxycarbonyl)-4-hydroxypiperidine-3-carboxylate **5a** and (3*S*,4*R*)-ethyl *cis*-**4b** and (3*R*,4*R*)-ethyl *trans*-1-(*tert*-butoxycarbonyl)-4-acetyloxypiperidine-3-carboxylate **5b** were prepared by lipase AK-catalyzed (*R*)-selective *O*-acetylation with VA in *i*-Pr₂O at 45 °C. (3*S*,4*S*)-Ethyl *cis*-1-benzyl-3-hydroxypiperidine-4-carboxylate **11a** (ee = 92%) and (3*R*,4*R*)-ethyl *cis*-1-benzyl-3-propanoyloxypiperidine-4-carboxylate **11b** (ee = 91%) were prepared by CAL-A-catalyzed (*R*)-selective *O*-acylation with VP in *i*-Pr₂O at 3°C. The isolated enantiomeric compounds were characterized, and the previously described literature data for **4a** were clarified. Enantiomerically pure **5a**, **5b** and **11b** had not been reported in the literature previously. All the enantiomerically pure compounds isolated are of great pharmaceutical interest for further investigations.

4. Experimental

In a typical small-scale experiment, the substrate (0.1 M) was dissolved in an organic solvent, and a lipase or a lipase preparation, 20% (w/w) immobilized on Celite in the presence of sucrose,²² and 2 equiv of an acyl donor were added. The progress of the reactions and the ee values were followed by taking samples at intervals and analyzing them by gas chromatography on a Chrompack CP-Chirasil-DEX-CB (25m). For good baseline separation, the unreacted hydroxy group in the sample was derivatized with acetic or propanoic anhydride in the presence of pyridine containing 1% 4-*N*,*N*-dimethylaminopyridine before injections.

Melting points were determined with a Kofler apparatus at a heating rate of 4 °C/min. ¹H NMR spectra were recorded in CDCl₃ at ambient temperature on a Bruker DRX400 spectrometer. Chemical shifts are given in δ (ppm) relative to TMS as internal standard; multiplicities were recorded as s (singlet), br s (broad singlet), d (doublet), dd (double doublet), ddd (double double doublet), t (triplet), dt (double triplet), ddt (double double triplet), q (quartet) or m (multiplet). MS spectra were recorded on a Finnigan MAT 95 S instrument. Elemental analyses were performed with a Perkin–Elmer CHNS-2400 Ser II Elemental Analyzer. Optical rotations were measured with a Perkin–Elmer 341 polarimeter.

4.1. Ethyl 4-oxopiperidine-3-carboxylate hydrochloride, 2

Ethyl 1-benzyl-4-oxopiperidine-3-carboxylate hydrochloride¹⁸ 1 (2.5 g, 8.40 mmol) was hydrogenated in the

^c Conv. = $ee_s/(ee_s + ee_p)$.

^e *c* 1, CH₂Cl₂.

3285

presence of 10% Pd/C catalyst at atmospheric pressure in abs EtOH (250 mL) for 8 h until the hydrogen uptake was over. The catalyst was then filtered off and the solvent was evaporated off. The residue was recrystallized from EtOH/Et₂O to give light-brown crystals (1.64 g, 94%), mp 159–162 °C, lit. mp²³ 164–166 °C. ¹H NMR δ 1.31 (3H, t, J = 7.1 Hz, CH₂CH₃), 2.77 (2H, t, J = 5.7, 6-CH₂), 3.37 (2H, d, J = 5.2 Hz, 5-CH₂), 3.87 (2H, s, 2-CH₂), 4.23 (2H, q, J = 7.1 Hz, OCH₂), 10.12 (2H, s, NH_2^+ Cl⁻), 12.16 (1H, br s, OH). Anal. Calcd for C₈H₁₄ClNO₃: C, 46.27; H, 6.80; N, 6.75. Found: C, 46.64; H, 6.99; N, 6.27%.

4.2. Ethyl 1-(*tert*-butoxycarbonyl)-4-oxopiperidine-3-carboxylate, 3

Ethyl 4-oxopiperidine-3-carboxylate hydrochloride 2 (6.05g, 29.23 mmol) was dissolved in CH₂Cl₂, and Et₃N (11.86g, 117.21 mmol) was added. The mixture was stirred for 2h and di-tert-butyl dicarbonate (7.04g, 32.22 mmol) was then added to the mixture, which was next stirred overnight. The solvent was evaporated off and the product was purified by silica gel column chromatography, using EtOAc/hexane = 1:3 as eluent, to give colourless crystals (7.06g, 89%), mp 64-65°C (crystallized from hexane), lit. mp^{12b} 62°C. ¹H NMR δ 1.31 (3H, t, J = 6.6 Hz, CH₂CH₃), 1.48 (9H, s, *t*Bu), 2.32–2.40 (2H, m, 5-CH₂), 3.56 (2H, t, J = 5.8 Hz, 6-CH₂), 4.06 (2H, s, 2-CH₂), 4.23 (2H, q, J = 6.8 Hz, OCH₂), 12.05 (1H, br s, OH). Anal. Calcd for C₁₃H₂₁NO₅: C, 57.55; H, 7.80; N, 5.16. Found: C, 57.06; H, 8.00; N, 4.72%.

4.3. (\pm)-Ethyl *cis*- and *trans*-1-(*tert*-butoxycarbonyl)-4-hydroxypiperidine-3-carboxylate, (\pm)-4 and (\pm)-5

Ethyl 1-(*tert*-butoxycarbonyl)-4-oxopiperidine-3-carboxylate (3g, 11.06mmol) was dissolved in abs EtOH (ca. 100mL), and NaBH₄ (0.25g, 6.61mmol) was added in small portions during 30min at room temperature.^{2g} The mixture was stirred overnight, and the solvent was then evaporated off. The residue was dissolved in water and extracted with EtOAc (3×25 mL). The combined organic layer was dried on Na₂SO₄ and concentrated. NMR indicated that the crude product was a mixture of 87% *cis* and 13% *trans* isomers. The diastereomers were separated by column chromatography, using EtOAc/hexane = 1:3 as eluent.

(±)-4. First-eluting isomer, de = 98%: colourless crystals, mp 62–63 °C (crystallized from hexane), lit. mp^{12b} 58–60 °C. ¹H NMR (DMSO- d_6 , 400 MHz, 333 K) δ 1.19 (3H, t, J = 7.3 Hz, CH₂CH₃), 1.39 (9H, s, *t*Bu), 1.49–1.59 (1H, m, 5-H_{ax}), 1.67 (1H, ddd, J = 3.8, 13.6 Hz, 5-H_{eq}), 2.46 (1H, dd, J = 3.3, 4.3 Hz, 3-H_{ax}), 3.06–3.26 (2H, m, 6-H_{ax}, 2-H_{ax}), 3.58 (1H, ddt, J = 1.3, 4.8, 13.1 Hz, 6-H_{eq}), 3.77 (1H, dd, J = 4.0, 13.4 Hz, 2-H_{eq}), 4.02–4.12 (2H, m, CH₂CH₃), 4.19 (1H, dd, J = 3.5, 6.0 Hz, 4-H), 4.70 (1H, br s, OH). ¹³C NMR δ 13.7, 27.8, 31.5, 38.0, 39.6, 45.4, 59.4, 64.1, 78.3, 154.4, 170.8. MS (*m*/*z*, EI) (rel. abund.) 273 (2, [M⁺]), 216 (32), 200 (13), 172 (23), 154 (37), 126 (50), 100 (24), 82 (79), 57 (100), 41 (21). Anal. Calcd for

 $C_{13}H_{23}NO_5$: C, 57.13; H, 8.48; N, 5.12. Found: C, 57.22; H, 8.98; N, 5.26%.

(±)-5. de = 90%: light-yellow oil, ¹H NMR (DMSO- d_6 , 400 MHz, 333 K) δ 1.19 (3H, t, J = 7.1 Hz, CH₂CH₃), 1.22–1.32 (1H, m, 5-H), 1.39 (9H, s, *t*Bu), 1.81 (1H, ddd, J = 4.3, 7.6, 12.6 Hz, 5-H), 2.23 (1H, ddd, J = 4.0, 9.1, 9.8 Hz, 3-H), 2.72–3.13 (2H, m, 2-H, 6-H), 3.73–3.80 (2H, m, 2-H, 6-H), 3.89 (1H, dd, J = 2.3, 13.4 Hz, 4-H), 4.08 (2H, q, J = 7.0 Hz, OCH₂CH₃), 4.79 (1H, d, J = 5.5, OH). ¹³C NMR δ 13.7, 27.7, 32.5, 41.3, 43.5, 49.7, 59.6, 67.59, 78.6, 153.5, 171.5. MS (*m*/*z*, EI) (rel. abund.) 273 (4, [M⁺]), 216 (67), 200 (32), 172 (66), 154 (37), 126 (72), 100 (65), 82 (82), 57 (100), 41 (51). Anal. Calcd for C₁₃H₂₃NO₅: C, 57.13; H, 8.48; N, 5.12. Found: C, 57.25; H, 8.64; N, 5.20%.

4.4. Preparative-scale resolution of (±)-4

Five hundred milligrams (1.83 mmol) of (±)-4 was dissolved in 18 mL of *i*-Pr₂O, and 540 mg (30 mg/mL) of 20% lipase AK preparation and 340 μ L (3.67 mmol) of VA were added. The reaction mixture was shaken at 45 °C for 41.5 h. The reaction was stopped at 50% conversion by filtering off the enzyme. After evaporation of the solvent, the crude mixture was purified by column chromatography, using EtOAc/hexane = 1:3 as eluent.

(3R,4S)-4a (150mg, 30%), a slowly crystallizing oil, ee >99%, $[\alpha]_D^{25} = +57.9$ (*c* 1, CH₂Cl₂). The ¹H NMR, ¹³C NMR and MS data were identical with those for (±)-4. HRMS (EI): 273.15839 (calcd 273.15762). Anal. Calcd for C₁₃H₂₃NO₅: C, 57.13; H; 8.48; N, 5.12. Found: C, 56.77; H, 7.93; N, 4.73%.

(3*S*,4*R*)-4**b** (160 mg, 47%), a colourless oil, ee = 99%, $[\alpha]_D^{25} = -41.0$ (*c* 1, CH₂Cl₂). ¹H NMR δ 1.23 (3H, t, *J* = 7.0 Hz, CH₂CH₃), 1.46 (9H, s, *t*Bu), 1.64– 1.75 (1H, m, 5-H_{ax}), 1.95 (1H, ddd, *J* = 3.0, 7.3, 12.1 Hz, 5-H_{eq}), 2.04 (3H, s, OCOCH₃), 2.66 (1H, ddd, *J* = 3.3, 4.3, 11.1 Hz, 3-H_{ax}), 3.05 (1H, t, *J* = 12.3, 6-H_{ax}), 3.31 (1H, t, *J* = 12.6, 2-H_{ax}), 3.86 (1H, d, *J* = 10.3 Hz, 6-H_{eq}), 4.05–4.21 (3H, m, 2-H_{eq}, CH₂CH₃), 5.46 (1H, dd, *J* = 3.0, 6.3 Hz, 4-H). ¹³C NMR δ 14.8, 21.6, 29.1, 29.8, 39.6, 41.4, 45.0, 61.4, 68.8, 80.7, 155.6, 171.1, 170.6. MS (*m*/*z*, EI) (rel. abund.) 315 (3, [M⁺]), 258 (68), 242 (15), 214 (65), 199 (70), 182 (26), 170 (25), 154 (88), 126 (87), 110 (29), 82 (92), 57 (100), 43 (43). HRMS (EI): 315.17090 (calcd 315.16818). Anal. Calcd for C₁₅H₂₅NO₆: C, 57.13; H, 7.99; N, 4.44. Found: C, 57.63; H, 8.23; N, 4.74%.

4.5. Preparative-scale resolution of (\pm) -5

Compound (\pm)-**5** [168 mg (0.61 mmol)] was dissolved in 6mL of *i*-Pr₂O, and 180 mg (30 mg/mL) of 20% lipase AK preparation and 114 µL (1.23 mmol) of VA were added. The reaction mixture was shaken at 45 °C for 14 h. The reaction was stopped at 50% conversion by filtering off the enzyme. After evaporation of the solvent, the crude mixture was purified by column chromatography, using EtOAc/hexane = 1:3 as eluent.

 $(3S_4S)$ -**5a** (68mg, 41%), a light-yellow oil, ee = 99%, $[\alpha]_{25}^{25} = -24.4$ (*c* 0.91, CH₂Cl₂). The ¹H NMR, ¹³C NMR and MS data were identical with those for (±)-**5**. HRMS (EI): 273.15965 (calcd 273.15762). Anal. Calcd for C₁₃H₂₃NO₅: C: 57.13, H: 8.48, N: 5.12. Found: C: 56.64, H: 8.06, N: 4.96%.

(3*R*,4*R*)-**5b** (67 mg, 39%), a light-yellow oil, ee >99%, $[\alpha]_D^{25} = +6.5$ (*c* 1.01, CH₂Cl₂). ¹H NMR δ 1.25 (3H, t, *J* = 7.1 Hz, CH₂CH₃), 1.46 (9H, s, *t*Bu), 1.50–1.70 (1H, m, 5-H_{ax}), 2.03 (3H, s, OCH₃), 2.04– 2.10 (1H, m, 5-H_{eq}), 2.60 (1H, ddd, *J* = 4.3, 9.8 Hz, 3-H_{ax}), 3.01 (1H, ddd, *J* = 3.3, 11.1, 13.9 Hz, 6-H_{ax}), 3.14 (1H, br s, 2-H_{ax}), 3.91 (1H, dt, *J* = 4.0, 13.9 Hz, 6-H_{eq}), 4.12 (3H, q, *J* = 7.1 Hz, 2-H, CH₂CH₃), 5.14 (1H, ddd, *J* = 4.3, 9.6 Hz, 4-H). ¹³C NMR δ 14.8, 21.7, 29.0, 30.3, 42.3, 44.7, 47.6, 61.6, 71.7, 80.9, 155.0, 170.6, 171.5. MS (*m*/*z*, EI) (rel. abund.) 315 (3, [M⁺]), 256 (16), 242 (15), 214 (42), 198 (77), 182 (42), 170 (26), 154 (88), 126 (87), 110 (32), 82 (93), 57 (100), 43 (46). HRMS (EI): 315.16915 calcd 315.16818). Anal. Calcd for C₁₅H₂₅NO₆: C, 57.13; H, 7.99; N, 4.44. Found: C, 57.08; H, 7.88; N, 4.22%.

4.6. (±)-Ethyl *cis*-1-benzyl-3-hydroxypiperidine-4-carboxylate, (±)-11

1-Benzyl-3-oxopiperidine-4-carboxylate $(1.5 \,\mathrm{g},$ 5.74mmol) (liberated from 6^{17} with Et₃N and purified by silica gel column chromatography, using EtOAc/hexane = 1:3 as eluent) was dissolved in abs EtOH (ca. 100 mL), and NaBH₄ (0.25 g, 6.61 mmol) was added in small portions during 30min at room temperature.^{2g} The mixture was stirred overnight, and the solvent was then evaporated off. The residue was dissolved in water and extracted with EtOAc $(3 \times 20 \text{ mL})$. The combined organic layer was dried on Na₂SO₄ and concentrated. NMR indicated that the crude product was a mixture of 74% cis and 26% trans isomers. The cis isomer was isolated after silica gel column chromatography, using EtOAc/hexane = 1:3 as eluent; the *trans* isomer could be obtained only in a 1:1 diastereomeric mixture.

(±)-11. First-eluting isomer, de = 98%: a light-brown oil, ¹H NMR (DMSO- d_6 , 400 MHz) δ 1.16 (3H, t, J = 7.09 Hz, CH₂CH₃), 1.48–1.60 (1H, m, 5-H), 1.92 (2H, t, J = 8.46 Hz, 5-H, 6-H), 2.10 (1H, d, J = 11.37 Hz, 2-H), 2.35–2.45 (1H, m, 4-H), 2.68–2.80 (2H, m, 2-H, 6-H), 3.45 (2H, d, J = 1.51 Hz, CH₂Ph), 3.95–4.10 (3H, m, CH₂CH₃, 3-H), 4.32 (1H, d, J = 6.92 Hz, OH), 7.18–7.35 (5H, m, aromatic). ¹³C NMR (DMSO- d_6 , 400 MHz) δ 14.6, 22.6, 45.6, 51.9, 59.2, 60.0, 62.3, 66.4, 127.2, 128.5, 129.1, 138.7, 173.0. MS (m/z, EI) (rel. abund.) 263 (10, [M⁺]), 245 (6), 234 (4), 218 (12), 186 (8), 172 (50), 146 (8), 126 (8), 118 (4), 98 (6), 91 (100). HRMS (EI): 263.15238 (calcd 263.152141). Anal. Calcd for C₁₅H₂₁NO₃: C, 68.42; H, 8.04; N, 5.32. Found: C, 68.35; H, 7.99; N, 5.36%.

4.7. Preparative-scale resolution of (±)-11

Compound (\pm)-11 [165 mg (0.63 mmol)] was dissolved in 6 mL of *i*-Pr₂O, and 240 mg (40 mg/mL) of 20% CAL-A

preparation and 137 µL (1.26 mmol) of VA were added. The reaction mixture was stirred in a cold room for 5h. The reaction was stopped at 36% conversion by filtering off the enzyme. After evaporation of the solvent, the crude mixture was purified by column chromatography, using EtOAc as eluent, to afford (3*S*,4*S*)-**11a** (100.4 mg, 61%), ee = 51%, and (3*R*,4*R*)-**11b** (66.9 mg, 33%), ee = 91%, $[\alpha]_D^{25} = -24.0$ (*c* 1, CHCl₃).

¹H NMR data for **11b**: δ 1.13 (3H, t, J = 7.6Hz, OCOCH₂CH₃), 1.21 (3H, t, J = 7.0Hz, CH₂CH₃), 1.81–1.88 (1H, m, 4-H), 2.06–2.23 (3H, m, 1-H, 4-H, 5-H), 2.28–2.36 (2H, m, OCOCH₂CH₃), 2.47–2.54 (1H, m, 3-H), 2.94–3.00 (1H, m, 5-H), 3.07 (1H, dd, J = 3.0, 12.6Hz, 1-H), 3.50 (1H, d, J = 13.4Hz, 6-H), 3.60 (1H, d, J = 13.4Hz, 6-H), 4.04–4.19 (2H, m, CH₂CH₃), 5.32 (1H, dd, J = 3.0, 5.3Hz, 2-H), 7.22–7.32 (5H, m, aromatic). ¹³C NMR δ 9.9, 14.8, 23.9, 28.4, 44.5, 52.4, 55.9, 61.2, 62.9, 127.9, 128.9, 129.6, 138.2, 172.5, 174.4. MS (*m*/*z*, EI) (rel. abund.) 319 (6, [M⁺]), 290 (2), 274 (30), 256 (8), 245 (80), 228 (8), 218 (28), 190 (4), 172 (100), 149 (12), 118 (16), 97 (10), 91 (96). HRMS (EI): 319.17810 (calcd 319.17835).

Enantiomerically enriched **11a** [90mg (0.34 mmol)] was dissolved in 3 mL of *i*-Pr₂O, and 120 mg (40 mg/mL) of 20% CAL-A preparation and 75 μ L (0.68 mmol) of VA were added. The reaction mixture was stirred at 3 °C for 7.5 h. The reaction was stopped at 23% conversion by filtering off the enzyme. After evaporation of the solvent, the crude mixture was purified by column chromatography, using EtOAc as eluent, to afford (3*S*,4*S*)-**11a** (41.6 mg, 46%), ee = 92%, [α]_D²⁵ = +37.7 (*c* 0.77, CHCl₃), and (3*R*,4*R*)-**11b** (24.5 mg, 23%), ee = 62%.

The ¹H NMR, ¹³C NMR and MS data for **11a** were identical with those for (\pm) -**11**. HRMS (EI): 263.15261 (calcd 263.15214).

Acknowledgements

The authors acknowledge receipt of OTKA grants T034901 and TS 040888.

References

- (a) Krogsgaard-Larsen, P.; Thyssen, K.; Schaumburg, K. Acta Chem. Scand. 1978, 32, 327–334; (b) Jacobsen, P.; Schaumburg, K.; Krogsgaard-Larsen, P. Acta Chem. Scand. 1980, 34, 319–326.
- (a) Johnston, G. A. R.; Krogsgaard-Larsen, P.; Stephanson, A. Nature 1975, 258, 627–628; (b) Krogsgaard-Larsen, P.; Johnston, G. A. R.; Curtis, D. R.; Game, C. J. A.; McCulloch, R. M. J. Neurochem. 1975, 25, 803–809; (c) Johnston, G. A. R.; Stephanson, A. L.; Twitchin, B. J. Neurochem. 1976, 26, 83–87; (d) Johnston, G. A. R.; Krogsgaard-Larsen, P.; Stephanson, A. L.; Twitchin, B. J. Neurochem. 1976, 26, 1029–1032; (e) Krogsgaard-Larsen, P.; Roldskov-Christiansen, T. Eur. J. Med. Chem. 1979, 14, 157–164; (f) Krogsgaard-Larsen, P.; Labouta, I. M.; Schaumburg, K.; Falch, E.; Krogsgaard-Larsen, P. J. Med. Chem. 1981, 24, 1377–1383; (g) Jacobsen, P.; Labouta, I. M.; Schaumburg, K.; Falch, E.; Krogsgaard-Larsen, P. J. Med. Chem. 1982, 25, 1157–1162; (h) Ali, F. E.; Bondinell,

W. E.; Dandridge, P. A.; Frazee, J. S.; Garvey, E.; Girard,
G. R.; Kaiser, C.; Ku, T. W.; Lafferty, J. J.; Moonsammy,
G. I.; Oh, H.-J.; Rush, J. A.; Setler, P. E.; Stringer, O. D.;
Venslavsky, J. W.; Volpe, B. W.; Yunger, L. M.; Zirkle, C.
L. J. Med. Chem. 1985, 28, 653–660; (i) Pavia, M. R.;
Lobbestael, S. J.; Nugiel, D.; Mayhugh, D. R.; Gregor, V.
E.; Taylor, C. P.; Schwarz, R. D.; Brahce, L.; Vartanian,
M. G. J. Med. Chem. 1992, 35, 4238–4248; (j) Krogsgaard-Larsen, P.; Frolund, B.; Frydenvang, K. Curr. Pharm. Des. 2000, 6, 1193–1209.

- (a) Singh, S.; Basmadjian, G. P.; Avor, K. S.; Pouw, B.; Seale, T. W. J. Med. Chem. 1997, 40, 2474–2481; (b) Kozikowski, A. P.; Araldi, G. L.; Boja, J.; Meil, W. M.; Johnson, K. M.; Flippen-Anderson, J. L.; George, C.; Saiah, E. J. Med. Chem. 1998, 41, 1962–1969; (c) Hoepping, A.; Babich, J.; Zubieta, J. A.; Johnson, K. M.; Machill, S.; Kozikowski, A. P. Bioorg. Med. Chem. Lett. 1999, 9, 3211–3216; (d) Petukhov, P. A.; Zhang, M.; Johnson, K. J.; Tella, S. R.; Kozikowski, A. P. Bioorg. Med. Chem. Lett. 2001, 11, 2079–2083; (e) Feng, X.; Fandrick, K.; Johnson, R.; Janowsky, A.; Cashman, J. R. Bioorg. Med. Chem. 2003, 11, 775–780.
- Takemura, S.; Miki, Y.; Komada, F.; Takahashi, K.; Suzuki, A. Chem. Pharm. Bull. 1979, 27, 1893–1900.
- (a) Löscher, W.; Frey, H.-H. Drug Res. 1984, 34, 1484– 1488; (b) Crider, A. M.; Tita, T. T.; Wood, J. D.; Hinko, C. N. J. Pharm. Sci. 1982, 71, 1214–1219.
- (a) Carroll, F. I.; Lewin, A. H.; Abraham, P.; Parham, K.; Boja, J. W.; Kuhar, M. J. J. Med. Chem. 1991, 34, 883– 886; (b) Carroll, F. I.; Lewin, A. H.; Boja, J. W.; Kuhar, M. J. J. Med. Chem. 1992, 35, 969–981.
- (a) Liang, X.; Lohse, A.; Bols, M. J. Org. Chem. 2000, 65, 7432–7437; (b) Jensen, H. H.; Lohse, A.; Petersen, B. O.; Duus, J. O.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2000, 667–670; (c) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515–553; (d) Dhavale, D. D.; Matin, M. M.; Sharma, T.; Shabharwal, S. G. Bioorg. Med. Chem. 2003, 11, 3295–3305.
- (a) Byrgesen, E.; Nielsen, J.; Willert, M.; Bols, M. *Tetrahedron Lett.* **1997**, *38*, 5697–5700; (b) Carstensen, E. V.; Phytera, S. A.; Bols, M.; Nielsen J.; Willert M. Patent WO 9,903,832, 1999, *Chem. Abstr.* **1999**, *130*,

153577; (c) Liang, X.; Petersen, B. O.; Duus, J. O.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2001, 2764–2773.

- (a) Kawamoto, H.; Ozaki, S.; Itoh, Y.; Miyaji, M.; Arai, S.; Nakashima, H.; Kato, T.; Ohta, H.; Iwasawa, Y. J. Med. Chem. 1999, 42, 5061–5063; (b) Kawamoto, H.; Nakashima, H.; Kato, T.; Arai, S.; Kamata, K.; Iwasawa, Y. Tetrahedron 2001, 57, 981–986.
- Schinnerl, M.; Murray, J. K.; Langenhan, J. M.; Gellman, S. H. *Eur. J. Org. Chem.* **2003**, 721–726.
- (a) Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun. 1998, 633–640; (b) Laschat, S.; Dickner, T. Synthesis 2000, 1781–1813.
- (a) Knight, D. W.; Lewis, N.; Share, A. C.; Haigh, D. *Tetrahedron: Asymmetry* **1993**, *4*, 625–628; (b) Knight, D. W.; Lewis, N.; Share, A. C.; Haigh, D. J. Chem. Soc., *Perkin Trans. 1* **1998**, 3673–3683.
- Willert, M.; Bols, M. Acta Chem. Scand. 1998, 52, 461– 468.
- Roberti, M.; Rondanin, R.; Ferroni, R.; Baruchello, R.; Invidiata, F. P.; Andrisano, V.; Bertucci, C.; Bertolasi, V.; Grimaudo, S.; Tolomeo, M.; Simoni, D. *Tetrahedron: Asymmetry* 2000, 11, 4397–4405.
- Kozikowski, A. P.; Simoni, D.; Baraldi, P. G.; Lampronti, I.; Manfredini, S. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 441– 444.
- Seebach, D.; Roggo, S.; Maetzke, T.; Braunschweiger, H.; Cercus, J.; Krieger, M. *Helv. Chim. Acta* **1987**, *70*, 1605– 1615.
- 17. Iselin, B. M.; Hoffman, K. Helv. Chim. Acta 1954, 37, 178– 184.
- 18. Morosawa, S. Bull. Chem. Soc. Jpn. 1958, 31, 418-422.
- Kanerva, L. T.; Sundholm, O. Acta Chem. Scand. 1993, 47, 823–825.
- 20. Xie, Z.-F.; Nakamura, I.; Suemune, H.; Sakai, K. J. Chem. Soc., Chem. Commun. 1988, 966–967.
- Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294–7299.
- 22. Kanerva, L. T.; Sundholm, O. J. Chem. Soc., Perkin Trans. 1 1993, 2407–2410.
- Moreno-Manas, M.; Pérez, M.; Pleixats, R. Tetrahedron 1994, 50, 515–528.